A comprehensive analysis of different geometric correction methods for the Pleiades-1A and Spot-6 satellite images

Özcihan B., Özlü L. D., Karakap M. İ., Sürmeli H., Algancı U., Sertel E.

International Journal of Engineering and Geosciences, vol.8, no.2, pp.146-153, 2023 (ESCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 8 Issue: 2
  • Publication Date: 2023
  • Doi Number: 10.26833/ijeg.1086861
  • Journal Name: International Journal of Engineering and Geosciences
  • Journal Indexes: Emerging Sources Citation Index (ESCI), Scopus, Central & Eastern European Academic Source (CEEAS), Directory of Open Access Journals, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.146-153
  • Keywords: Accuracy Analysis, Empirical Models, Geometric Correction, Physical Models, Remote Sensing
  • Istanbul Technical University Affiliated: Yes


Satellite images have been widely used in the production of geospatial information such as land use and land cover mapping and the generation of several thematic layers via image processing techniques. The systematic sensor and platform-induced geometry errors influence images acquired by sensors onboard various satellite platforms. Thus, geometric correction of satellite images is essential for image pre-processing to extract accurate and reliable locational information. Geometric correction of satellite images obtained from two different satellites, Pleiades 1A (PHR) and SPOT-6, was performed within the scope of this study using empirical models and a physical model. The 2D polynomial model, 3D rational function model with calculated RPCs from GCPs, 3D rational function model with RPCs from satellite, RPC refinement model using GCPs, and Toutin's physical model were used. Several experiments were carried out to investigate the effects of various parameters on the performance of the geometric correction procedure, such as GCP reference data source, GCP number and distribution, DEM source, spatial resolution, and model. Our results showed that lower RMSE values could be achieved with the model that uses RPC from data providers for PHR and SPOT, followed by the RPC refinement method for PHR and Toutin method for SPOT. In general, GCPs from the HGM data source and ALOS DEM combination provided better results. Lastly, lower RMSE values, thus better locational accuracy values, were observed with the PHR image except for a single test.