Improving the performance of graph based dependency parsing by guiding bi-affine layer with augmented global and local features

Altıntaş M., Tantuğ A. C.

Intelligent Systems with Applications, vol.18, 2023 (Scopus) identifier

  • Publication Type: Article / Article
  • Volume: 18
  • Publication Date: 2023
  • Doi Number: 10.1016/j.iswa.2023.200190
  • Journal Name: Intelligent Systems with Applications
  • Journal Indexes: Scopus
  • Keywords: Artificial intelligence, Dependency parsing, Human sentence interpretation, Natural language processing, Sentence representation, Super token features
  • Istanbul Technical University Affiliated: Yes


© 2023 The Author(s)The growing interaction between humans and machines raises the necessity to more sophisticated tools for natural language understanding. Dependency parsing is crucial for capturing the semantics of a sentence. Although graph-based dependency parsing approaches outperform transition-based methods because they are not exposed to error propagation as their compeer, their feature space is comparatively limited. Thus, the main issue with graph-based parsing is how to expand the set of features to improve performance. In this research, we propose to expand the feature space of graph-based parsers. To benefit from the global meaning of the entire sentence content, we employee the sentence representation as an additional token feature. Also, to highlight local word collaborations that build sub-tree structures, we use convolutional neural network layers over token embeddings. We achieve the state-of-art results for Turkish, English, Hungarian, and Korean by getting the unlabeled and labeled attachment scores respectively on the test sets; 82.64% and 76.35% on Turkish IMST, 93.36% and 91.34% on English EWT, 90.85% and 87.39% on Hungarian Szeged, 92.44% and 89.58% on Korean GSD treebanks. Our experimental findings show that augmented global and local features empower the performance of graph-based dependency parsers.