(Au/PANA/PVAc) nanofibers as a novel composite matrix for albumin and streptavidin immobilization

Golshaei R., Guler Z., Sarac S. A.

MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, vol.60, pp.260-275, 2016 (SCI-Expanded) identifier identifier identifier


A novel electrospun nanofiber mat (Au/PANA/PVAc) consists of (Gold/Poly Anthranilic acid) (Au/PANA) core/shell nanostructures as a support material for protein immobilization that was developed and characterized by electrochemical impedance spectroscopy. In the core/shells, PANA served carboxyl groups (-COOH) for covalent protein immobilization and Au enhanced the electrochemical properties by acting as tiny conduction centers to facilitate electron transfer. Covalent immobilization of albumin and streptavidin as model proteins onto the (Au/PANA/PVAc) nanofibers was carried out by using 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxyl succinimide (NHS) activation. PVAc nanofibers were compared with Au/PANA/PVAc nanofibers before and after protein immobilization. The successful covalent binding of both albumin and streptavidin onto (Au/PANA/PVAc) nanofibers was confirmed by FTIR-ATR, Electron Microscopy/Energy-Dispersive X-ray Spectroscopy SEM/EDX and Electrochemical impedance spectroscopy (EIS). The nanofibers became resistive due to protein immobilization and the higher charge transfer resistance was observed after higher amount of protein was immobilized. (C) 2015 Elsevier B.V. All rights reserved.