Wavelet based Neuro-Detector for low frequencies of vibration signals in electric motors

Bayram D., SEKER S.

APPLIED SOFT COMPUTING, vol.13, no.5, pp.2683-2691, 2013 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 5
  • Publication Date: 2013
  • Doi Number: 10.1016/j.asoc.2012.11.019
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.2683-2691
  • Istanbul Technical University Affiliated: No


This study presents a Wavelet based Neuro-Detector approach employed to detect the aging indications of an electric motor. Analysis of the aging indications, which can be seen in the low frequency region, is performed using vibration signals. More specifically, two vibration signals are observed for healthy and faulty (aged) cases which are measured from the same electric motor. Multi Resolution Wavelet Analysis (MRWA) is applied in order to obtain low and high frequency bands of the vibration signals. Thus for detecting the aging properties in the spectra, the Power Spectral Density (PSD) of the subband for the healthy case is used to train an Auto Associative Neural Network (AANN). The PSD amplitudes, which are computed for the faulty case, are applied to input nodes of the trained network for the re-calling process of AANN. Consequently, the simulation results show that some spectral properties defined in low frequency region are determined through the error response of AANN. Hence, some specific frequencies of the bearing damage related to the aging process are detected and identified. (C) 2012 Elsevier B. V. All rights reserved.