Synergistic effect of carbon nanomaterials on a cost-effective coral-like Si/rGO composite for lithium ion battery application


Benzait Z., Yuca N.

ELECTROCHIMICA ACTA, cilt.339, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 339
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.electacta.2020.135917
  • Dergi Adı: ELECTROCHIMICA ACTA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: Lithium ion battery, Silicon anode, Graphene, Carbon nanomaterials, Synergistic effect, PERFORMANCE SILICON ANODES, REDUCED GRAPHENE OXIDE, SI ALLOY POWDER, THIN-FILM, HUMMERS METHOD, NANOPARTICLES, STABILITY, HYBRID, REDUCTION, NETWORKS
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

The emergence and the continuous rise of smart technologies require to emergently meet their ever-increasing energy demand. Improving the commercial lithium-ion batteries (LIB) by using silicon-which has a distinct energy storage capacity-might be a promising solution. However, solving Sirelated problems, such as gross volume variation and low electrical conduction, is indispensable. Preparing different Si nanostructures having certain internal voids, and adding some conductive materials, are two smart approaches largely used to mitigate the volume expansion and to enhance the electrons transport of LIB anodes. Still, their raw materials and their preparation methods are generally costly, which limits their feasibility for commercial scalability. In this study, we synthesized a coral-like nanoporous Si/rGO composite, starting from cheap raw materials (graphite and Al-Si powders), and using simple methods which do not need any high temperatures or sophisticated equipment. The preparation steps were also reduced, as the reactions of Al-etching and GO reduction concurrently occurred. The LIB half-cells made on this composite were further improved by incorporating other carbon nanomaterials which had a synergistic effect on both cycling and rate performances: a reversible capacity of 1080 mAh g(-1) at 0.2 A g(-1) after 250 cycles; and similar to 1710,1300,1030 - and 840 mAh g(-1) at a rate of 1, 2, 3, and 4 A g(-1) respectively, have been achieved. Testing a full battery with an LCO cathode has also given a promising result: a reversible capacity of similar to 54 mAh g(-1) at 36 mA g(-1) after 25 cycles has been obtained. (C) 2020 Elsevier Ltd. All rights reserved.