Demonstration of Helide formation for fusion structural materials as natural lattice sinks for helium


Kim S. Y., Kavak S., Bayrak K. G., Sun C., Xu H., Lee M. J., ...More

Acta Materialia, vol.266, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 266
  • Publication Date: 2024
  • Doi Number: 10.1016/j.actamat.2024.119654
  • Journal Name: Acta Materialia
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Keywords: Ab initio calculations, Grain boundary embrittlement, Grazing incidence XRD, Helium, Irradiation
  • Istanbul Technical University Affiliated: Yes

Abstract

Fusion power holds promise as an ultimate energy source. However, achieving true sustainability in fusion energy requires addressing the embrittlement of polycrystalline materials in fusion reactors caused by helium, which leads to premature failure, often within a year. Here we experimentally demonstrate that nanodispersoids with constitutional vacancy-like atomic-scale free volume can securely store helium, not only at the matrix-dispersoid interface but also within their bulk lattices, which suggests their effectiveness in delaying critical helium damage of the polycrystalline matrix. The selected model nano-heterophase, fayalite Fe2SiO4, possesses moderately strong lattice sinks for helium while undergoing lattice distortions upon helium absorption. These distortions cause observable changes in peak intensities of X-ray diffraction (XRD) patterns, distinct from changes resulting from other factors like radiation damage. By comparing grazing incidence XRD patterns with ab initio computed patterns, we show that such nano-heterophases can store up to ∼10 at% helium within their bulk lattice, forming a “helide compound.” Incorporating just 1 vol% of Fe2SiO4 reduces helium bubble size and number density by >20 % and >50 %, respectively. These findings suggest that 1–2 vol% of appropriate nano-heterophases can accommodate a few thousand appm of bulk helium, expected to be generated over a 10-year operational period.