Annular-ring CMUT arrays for forward-looking IVUS: Transducer characterization and imaging

Degertekin F., GULDIKEN R., Karaman M.

IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, vol.53, no.2, pp.474-482, 2006 (SCI-Expanded) identifier identifier


In this study, a 64-element, 1.15-mm diameter annular-ring capacitive micromachined ultrasonic transducer (CMUT) array was characterized and used for forward-looking intravascular ultrasound (IVUS) imaging tests. The array was manufactured using low-temperature processes suitable for CMOS electronics integration oil a single chip. The measured radiation pattern of a 43 X 140- mu m(2) array element depicts a 40 degrees view angle for forward-looking imaging around a 15-MHz center frequency in agreement with theoretical models. Pulse-echo measurements show a -10-dB fractional bandwidth of 104% around 17 MHz for wire targets 2.5 mm away from the array in vegetable oil. For imaging and SNR measurements, RF A-scan data sets from various targets were collected using all interconnect scheme forming a 32-element array configuration. An experimental point spread function was obtained and compared with simulated and theoretical array responses, showing good agreement. Therefore, this study demonstrates that annular-ring CMUT arrays fabricated with CMOS-compatible processes are capable of forward-looking IVUS imaging, and the developed modeling tools can be used to design improved IVUS imaging arrays.