Ultraprecise control over the photophysical properties of novel amino acid functionalized CdTeS quantum dots and their effect on the emission of yellow-emissive carbon dots


Kestir S. M., Şahin Keskin S., Ergüder Ö., Ük N., Türker Y., Nar I., ...Daha Fazla

Dalton Transactions, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1039/d3dt00019b
  • Dergi Adı: Dalton Transactions
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, MEDLINE
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Cadmium-based quantum dots (QDs) are amongst the most studied nanomaterials due to their excellent photophysical properties, which can be controlled by controlling the size and/or composition of the nanocrystal. However, the ultraprecise control over size and photophysical properties of Cd-based quantum dots and developing user-friendly techniques to synthesize amino acid-functionalized cadmium-based QDs are still the on-going challenges. In this study, we modified a traditional two-phase synthesis method to synthesize cadmium telluride sulfide (CdTeS) QDs. CdTeS QDs were grown with an extremely slow growth-rate (growth saturation of about 3 days), which allowed us to have an ultraprecise control over size, and as a consequence, the photophysical properties. Also, the composition of CdTeS could be controlled by controlling the precursor ratios. The CdTeS QDs were successfully functionalized with a water-soluble amino acid, l-cysteine, and an amino acid derivative, N-acetyl-l-cysteine. Red-emissive l-cysteine-functionalized CdTeS QDs interacted with yellow-emissive carbon dots. The fluorescence intensity of carbon dots increased upon interaction with CdTeS QDs. This study proposes a mild method that allows to grow QDs with an ultraprecise control over the photophysical properties and shows the implementation of Cd-based QDs to enhance the fluorescence intensity of different fluorophores with fluorescence wavelength at higher energy bands.