Surface Chemistry Tuning Solutions for Flotation of Fine Particles


Creative Commons License

Karakashev S. I., Grozev N. A., Mircheva K., Ata S., Bournival G., Hristova S., ...More

Minerals, vol.13, no.7, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 7
  • Publication Date: 2023
  • Doi Number: 10.3390/min13070957
  • Journal Name: Minerals
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, CAB Abstracts, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Keywords: DLVO, fine particles, foamability, frothers, interfacial forces, zeta potential
  • Istanbul Technical University Affiliated: Yes

Abstract

This paper analyses the basic obstacles preventing the fine particles from floating and suggests solutions for the wetting zone between the bubble and the particle during their collision. It has been shown in our recent paper that the basic problem of fine particle flotation is not the low frequency of collisions with the bubbles, but it consists of the efficiency of these collisions. Moreover, there exists a thermodynamic lower size limit for flotation of fine hydrophobized particles in the sub-micron range, and it is weakly dependent on the size of the bubbles. It was shown that fast flotation with high recovery of fine particles can be achieved by means of: (i) electrostatic attraction between particles and bubbles; (ii) a significant increase in the level of their hydrophobicity; (iii) existence of fine bubbles in the flotation cell. It was shown as well that the drainage of the wetting film between bubbles and particles is unimportant, but the deformation of the bubble by the particle during their clash plays a major role in its rupturing. Electrostatic attraction between bubbles and fine silica particles was achieved with hexylamine. It causes a moderate increase of their hydrophobicity from contact angle = 39.5° ± 2.5° to contact angle = 51.7° ± 7.5° and gave almost 90% recovery within 2 min. Unfortunately, the selectivity of this collector is unsatisfactory if the fine silica particles are mixed with fine magnesite particles. It was shown that even being hydrophilic, the recovery of fine particles can jump to almost 50% if strong electrostatic attraction with the bubbles exists. It was demonstrated as well with the collector hexamethyldisilazane causes significant increase of the hydrophobicity of the fine silica particles (contact angle ≈ 90°) results in skin flotation with 100% recovery when alone and 97% recovery when being mixed with fine magnesite particles (51/49). A new collector significantly increasing the hydrophobicity of magnesite fine particles was tested (disodium dodecyl phosphate) resulting in 89% recovery of fine magnesite particles alone and about 98% recovery in a mixture with fine silica particles.