The Re-use of End-of-Life Fiber Reinforced Polymer Composites in Construction


Andre A., Magdalena J., Cecilia M., Georgi N., Haghani R.

10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), İstanbul, Türkiye, 8 - 10 Aralık 2021, cilt.198, ss.1183-1195 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 198
  • Doi Numarası: 10.1007/978-3-030-88166-5_103
  • Basıldığı Şehir: İstanbul
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.1183-1195
  • Anahtar Kelimeler: Circular economy, Sustainability, Wind turbine, Pedestrian bridge, FRP, Recycling, BRIDGE DECKS
  • İstanbul Teknik Üniversitesi Adresli: Hayır

Özet

In order to achieve a more resource-efficient society and a future with reduced carbon dioxide emissions, new technological challenges must be dealt. One way to reach a more sustainable world is to start re-using end-of-life structures and waste and give them a "Second Life" with new functions in the society. As fiber reinforced polymer (FRP) composites are lightweight, strong, stiff and durable materials, there is great potential to re-use decommissioned FRP structures for new resource-efficient solutions in the building and infrastructure sectors. The present paper investigates innovative solutions in re-using wind turbine blades and glass fibre reinforced polymer (GFRP) pipes as structural elements in new bicycle and pedestrian bridges. Specifically, a concept design for decking system made of GFRP pipes is developed and discussed. The main design requirements for pedestrian bridges are considered and assumptions regarding end-of-life GFRP quality and their mechanical properties have been addressed. The aim of this paper is to contribute to a sustainable use of GFRP waste and at the same time provide a more cost-effective solution for short span pedestrian bridges. In a larger perspective, the authors would like to highlight the economically profitable potential of recovering and reusing/re-manufacturing end-of-life GFRP composites.