An application of fuzzy fault tree analysis for spread mooring systems


Menteş A. , Helvacıoğlu İ. H.

OCEAN ENGINEERING, cilt.38, ss.285-294, 2011 (SCI İndekslerine Giren Dergi) identifier identifier

Özet

In this paper, a fuzzy fault tree analysis methodology for spread mooring systems is presented. The methodology combines the effects of operational failures and human errors under fuzzy environment for the spread mooring configurations. In conventional fault tree analysis (FTA), which is an established technique in hazard identification, the ambiguous and imprecise events such as human errors cannot be handled efficiently. In addition to this, the tolerances of the probability values of hazards are not taken into account. Moreover, it is difficult to have an exact estimation of the failure rates of the system components or the probability of the occurrence of undesired events due to the lack of sufficient data. To overcome these disadvantages, a fault tree analysis based on the fuzzy set theory is proposed and applied to the spread mooring system alternatives. Furthermore, sensitivity analysis is carried out based on the fuzzy weighted index (FWI) in order to measure the impact of each basic event on the top event. The results show that the fuzzy fault tree risk analysis method (FFTA) is more flexible and adaptive than conventional fault tree analysis for fault diagnosis and hazard estimation of spread mooring systems. (C) 2010 Elsevier Ltd. All rights reserved.