3D Imaging of Dielectric Objects Buried under a Rough Surface by Using CSI


Tetik E., Akduman İ.

INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2015 (SCI-Expanded) identifier identifier

Özet

A 3D scalar electromagnetic imaging of dielectric objects buried under a rough surface is presented. The problem has been treated as a 3D scalar problem for computational simplicity as a first step to the 3D vector problem. The complexity of the background in which the object is buried is simplified by obtaining Green's function of its background, which consists of two homogeneous half-spaces, and a rough interface between them, by using Buried Object Approach (BOA). Green's function of the two-part space with planar interface is obtained to be used in the process. Reconstruction of the location, shape, and constitutive parameters of the objects is achieved by Contrast Source Inversion (CSI) method with conjugate gradient. The scattered field data that is used in the inverse problem is obtained via both Method of Moments (MoM) and Comsol Multiphysics pressure acoustics model.