An Investigation of Thermal Decomposition Behavior of Hazelnut Shells


Çelebi M. S., KARATEPE N.

INTERNATIONAL JOURNAL OF GREEN ENERGY, cilt.12, sa.1, ss.93-97, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 1
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1080/15435075.2014.893876
  • Dergi Adı: INTERNATIONAL JOURNAL OF GREEN ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.93-97
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Turkey has a drastic potential in terms of biomass energy and it would be of utmost importance for our energy mix if this huge amount of energy is to be utilized. Thermochemical conversion is the most dominant one among the energy conversion processes. The carbonization process is the key point in determining the kinetic parameters of the fuels utilized. Thereafter, the kinetic parameters obtained from carbonization would be utilized in designing the thermochemical conversion equipments. In this study, the thermal decomposition behavior of hazelnut shells was investigated via dynamical thermogravimetry (TG) under N-2 atmosphere. In order to determine the effects of heating rate and gas flow rate, the experiments were performed in four different heating rates of 5, 20, 50, and 100 K/min and two different nitrogen flow rates of 50 and 100 cm(3)/min. As the heating rate was increased, peak temperature was increased, maximum temperature shifted to the right (higher T zones) and the maximum rate of weight loss was increased. In addition, lignin decomposition temperature interval was decreased whereas; cellulose decomposition temperature interval was increased. Increasing the heating rate from 5 to 20 K/min, hemicellulose decomposition temperature interval was increased. Total weight loss was slightly increased by the increase of gas flow rate. Kinetic parameters were calculated according to Coats Redfern method. It was found that activation energies of thermal decomposition reactions of hazelnut shell varied between 1.30 and 32.19 kJ/mol.