15th IEEE Mediterranean Electrotechnical Conference (MELECON 2010), Malta, 25 - 28 April 2010, pp.26-29
This paper presents an experimental study on examining the effects of facial and racial features on gender classification. In order to show which facial feature is the most influential for gender classification, parts of several face images, such as, forehead, eyebrows, eyes, nose, lip and chin were masked. For dimension reduction, Principal Component Analysis (PCA) and for determination of gender, Fisher Linear Discriminant (FLD) algorithms were applied to masked face images. Moreover, the effects of racial features on gender classification were studied. Experimental results indicated that the nose is the most influential part for gender classification. Furthermore the gender of the Asian people is more easily distinguished than that of the people of African origin.