Ensemble Image Classification Method Based on Genetic Image Network


Nakayama S., Shirakawa S., Yata N., Nagao T.

13th European Conference on Genetic Programming, İstanbul, Turkey, 7 - 09 April 2010, vol.6021, pp.313-324 identifier

  • Publication Type: Conference Paper / Full Text
  • Volume: 6021
  • City: İstanbul
  • Country: Turkey
  • Page Numbers: pp.313-324

Abstract

Automatic construction method for image classification algorithms have been required. Genetic image Network for Image Classification (GIN-IC) is one of the methods that construct image classification algorithms automatically, and its effectiveness has already been proven. In our study, we try to improve the performance of GIN-IC with Ad-aBoost algorithm using GIN-IC as weak classifiers to complement with each other. We apply our proposed method to three types of image classification problems, and show the results in tins paper. In our method, discrimination rates for training images and test images improved in the experiments compared with the previous method GIN-IC.