Hierarchical decision tree classification of SAR data with feature extraction method based on spatial variations

Kasapoglu N., Yazgan B., Akleman F.

23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003), Toulouse, France, 21 - 25 July 2003, pp.3453-3455 identifier

  • Publication Type: Conference Paper / Full Text
  • City: Toulouse
  • Country: France
  • Page Numbers: pp.3453-3455
  • Istanbul Technical University Affiliated: No


In this study Binary Decision Tree classification and feature extraction method based on texture features are applied on SAR data. In order to achieve more complex analysis it is advantageous to use binary decision trees, in which the decision between only two classes must be assigned at each node [10]. Pixel based feature extraction methods reduce classification performance because of the speckle and also conventional texture analysis is not applicable to every part of an image. Therefore, a decision-making process, which can be applied to every pixel of an image, is required. The results show that computation time and accuracy of classification process are improved.