The effect of neutron attenuation on power deposition in nuclear pumped He-3-lasers


Cetin F.

6th International Conference of the Balkan-Physical-Union, İstanbul, Turkey, 22 - 26 August 2006, vol.899, pp.101-102 identifier

  • Publication Type: Conference Paper / Full Text
  • Volume: 899
  • City: İstanbul
  • Country: Turkey
  • Page Numbers: pp.101-102

Abstract

Nuclear-pumped lasers (NPLs) are driven by the products of nuclear reactions and directly convert the nuclear energy to directed optical energy. Pumping gas lasers by nuclear reaction products has the advantage of depositing large energies per reaction. The need for high laser power output implies high operating pressure. In the case of volumetric excitation by He-3(n, p)H-3 reactions, however, operation at high pressure (more than a few atm) causes excessive neutron attenuation in the He-3 gas. This fact adversely effects on energy deposition and, hence, laser output power and beam quality. Here, spatial and temporal variations of neutron flux inside a closed He-3-filled cylindrical laser tube have been numerically calculated for various tube radii and operating pressures by using a previously reported dynamic model for energy deposition. Calculations are made by using ITU TRIGA Mark II Reactor as the neutron source. The effects of neutron attenuation on power deposition are examined.