K-3,K-3-free intersection graphs of finite groups

Kayacan S.

COMMUNICATIONS IN ALGEBRA, cilt.45, sa.6, ss.2466-2477, 2017 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Konu: 6
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1080/00927872.2016.1233209
  • Sayfa Sayıları: ss.2466-2477


The intersection graph of a group G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of G, and there is an edge between two distinct vertices H and K if and only if H boolean AND K not equal 1 where 1 denotes the trivial subgroup of G. In this paper we classify all finite groups whose intersection graphs are K-3,K-3-free.