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Abstract

In this present investigation, we use the trigonometric polynomials Un(q, eiθ) to get the initial
coefficients of bi-univalent functions in the new-defined classes Sa,b,c

Σ (ξ, q, θ) and Ka,b,cΣ (ξ, q, θ).
We also derive Fekete-Szegö inequalities for functions in these classes.
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1 Introduction

Let R = (−∞,∞) be the set of real numbers, C be the set of complex numbers and

N := {1, 2, 3, . . .} = N0\ {0}

be the set of positive integers. Let D = {z ∈ C : |z| < 1} be open unit disc in C. As is well known,
the trigonometric polynomials Un(q, eiθ) are expressed by the generating function

Ψq(e
iθ, z) =

1

(1− zeiθ)(1− qze−iθ)

=

∞∑
n=0

Un(q, eiθ)zn (q ∈ (−1, 1] , θ ∈ [−π, π] , z ∈ D) ,

where

Un(q, eiθ) =
ei(n+1)θ − qn+1e−i(n+1)θ

eiθ − qe−iθ
(n ≥ 2)

with
U0(q, eiθ) = 1, U1(q, eiθ) = eiθ + qe−iθ, U2(q, eiθ) = e2iθ + q2e−2iθ + q, . . . .

The obtained results for q = 1 give the corresponding ones for Chebyshev polynomials of the second
kind. The classical Chebyshev polynomials which are used in this paper, have been given in the late
eighteenth century, when was defined using de Moivre’s formula by Chebyshev [7]. Such polynomials
as (for example) the Fibonacci polynomials, the Lucas polynomials, the Pell polynomials and the
families of orthogonal polynomials and other special polynomials as well as their generalizations
are potentially important in the fields of probability, statistics, mechanics, and number theory.
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Let A represent the class of functions f of the form

f(z) = z + a2z
2 + a3z

3 + · · · , (1.1)

which are analytic in D and normalized under the condition f(0) = f ′(0) − 1 = 0. Further, we
indicate by S the subclass of A consisting of functions that are univalent in D.

With a view to remanding the rule of subordination between analytic functions, let the functions
f, g be analytic in D. A function f is subordinate to g, indicated as f ≺ g (or f (z) ≺ g (z)) (z ∈ D) ,
if there exists a Schwarz function w ∈ Λ, where

Λ = {w : w (0) = 0, |w (z)| < 1, z ∈ D} ,

such that
f (z) = g (w (z)) (z ∈ D) .

According to the Koebe-One Quarter Theorem [8], it provides that the image of D under every
univalent function f ∈ A contains a disc of radius 1/4. Thus every univalent function f ∈ A has
an inverse f−1 satisfying f−1 (f (z)) = z and f

(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

g(w) = f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent in D. Let Σ
represent the class of bi-univalent functions in D given by (1.1). For a brief historical account in
the class Σ, see [19] (see also [1, 2, 3, 4, 5, 6, 9, 13, 17, 18, 20, 21]).

The convolution or Hadamard product of two functions f, g ∈ A is denoted by f ∗ g, and is
defined by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n,

where f is given by (1.1) and g(z) = z +
∞∑
n=2

bnz
n. Next, in our present investigation, we need

to recall the convolution operator Ia,b,c due to Hohlov [14, 15], which is a special case of the
Dziok-Srivastava operator [10, 11].

For the complex parameters a, b and c (c 6= 0,−1,−2, . . .), the Gaussian hypergeometric function

2F1(a, b, c; z) is defined as

2F1(a, b, c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!
= 1 +

∞∑
n=2

(a)n−1 (b)n−1

(c)n−1

zn−1

(n− 1)!
(z ∈ D),

where (a)n is the Pochhammer symbol (or the shifted factorial) given by

(a)n :=
Γ(a+ k)

Γ(a)
=

{
1 n = 0
a(a+ 1)(a+ 2) . . . (a+ n− 1) n ∈ N := {1, 2, . . .} .

Now we consider a linear operator introduced by Murugusundaramoorthy and Bulboaca [16] and

Ia,b,c : A→ A,
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defined by the Hadamard product

Ia,b,cf(z) = (z2F1(a, b, c; z)) ∗ f(z).

We observe that, for a function f of the form (1.1), we have

Ia,b,cf(z) = z +

∞∑
n=2

Ξnanz
n (z ∈ D),

where Ξn =
(a)n−1(b)n−1

(c)n−1(n−1)! .

The classical Fekete-Szegö inequality, expressed by means of Loewner’s method, for the coeffi-
cients of f ∈ S is ∣∣a3 − ta2

2

∣∣ ≤ 1 + 2 exp(−2t/(1− t)) for t ∈ [0, 1) .

As t→ 1−, we have the elementary inequality
∣∣a3 − a2

2

∣∣ ≤ 1. Moreover, the aim of maximizing the
absolute value of the functional

Πt(f) = a3 − ta2
2

is called the Fekete-Szegö problem (see [12]).
We want to assert evidently that by using the trigonometric polynomials Un(q, eiθ), we estab-

lish some new subclasses of bi-univalent functions based on subordination. Afterwards, we derive
coefficient bounds and obtain Fekete-Szegö inequalities for these classes.

Definition 1.1. A function f ∈ Σ is said to be in the class

Sa,b,c
Σ (ξ, q, θ) (0 ≤ ξ ≤ 1, q ∈ (−1, 1] , θ ∈ [−π, π] ; z, w ∈ D)

if the following conditions are satisfied:

z (Ia,b,cf(z))
′

(1− ξ)z + ξIa,b,cf(z)
≺ Ψq(e

iθ, z) (1.3)

and
w (Ia,b,cg(w))

′

(1− ξ)w + ξIa,b,cg(w)
≺ Ψq(e

iθ, w), (1.4)

where the function g = f−1.

Definition 1.2. A function f ∈ Σ is said to be in the class

Ka,b,cΣ (ξ, q, θ) (0 ≤ ξ ≤ 1, q ∈ (−1, 1] , θ ∈ [−π, π] ; z, w ∈ D)

if the following conditions are satisfied:

z (Ia,b,cf(z))
′
+ z2 (Ia,b,cf(z))

′′

(1− ξ)z + ξz (Ia,b,cf(z))
′ ≺ Ψq(e

iθ, z) (1.5)

and
w (Ia,b,cg(w))

′
+ w2 (Ia,b,cg(w))

′′

(1− ξ)w + ξw (Ia,b,cg(w))
′ ≺ Ψq(e

iθ, w), (1.6)

where the function g = f−1.
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2 The extension Chebyshev polynomial bounds for the function classes
Sa,b,c

Σ (ξ, q, θ) and Ka,b,c
Σ (ξ, q, θ)

In this part, we offer to get the extension Chebyshev polynomial bounds for functions in the classes
Sa,b,c

Σ (ξ, q, θ) and Ka,b,cΣ (ξ, q, θ).

Theorem 2.1. Let the function f given by (1.1) be in the class Sa,b,c
Σ (ξ, q, θ).Then

|a2| ≤
∣∣eiθ + qe−iθ

∣∣√|eiθ + qe−iθ|√
|(ξ − 2)Ξ2

2 (2e2iθ + 2q2e−2iθ + (ξ + 2)q) + (3− ξ)Ξ3(e2iθ + q2e−2iθ + 2q)|
,

|a3| ≤
∣∣eiθ + qe−iθ

∣∣
(3− ξ)Ξ3

+

∣∣e2iθ + q2e−2iθ + 2q
∣∣

(ξ − 2)2Ξ2
2

for any real number ρ,∣∣a3 − ρa2
2

∣∣ ≤

∣∣eiθ + qe−iθ
∣∣

(3− ξ)Ξ3
, |ρ− 1| ≤ X

|1− ρ|
∣∣e2iθ + q2e−2iθ + 2q

∣∣ ∣∣eiθ + qe−iθ
∣∣

|(ξ − 2)Ξ2
2 (2e2iθ + 2q2e−2iθ + (ξ + 2)q) + (3− ξ)Ξ3(e2iθ + q2e−2iθ + 2q)|

, |ρ− 1| ≥ X

where X =
|(ξ−2)Ξ2

2(2e2iθ+2q2e−2iθ+(ξ+2)q)+(3−ξ)Ξ3(e2iθ+q2e−2iθ+2q)|
(3−ξ)Ξ3|e2iθ+q2e−2iθ+2q| .

Proof. Let f ∈ Sa,b,c
Σ (ξ, q, θ) be given by the Taylor-Maclaurin expansion (1.1). Then, by the

definition of subordination, for two analytic functions ψ,ϕ such that

ψ(0) = 0, |ψ(z)| =
∣∣m1z +m2z

2 +m3z
3 + · · ·

∣∣ < 1 (z ∈ D),

ϕ(0) = 0, |ϕ(w)| =
∣∣r1w + r2w

2 + r3w
3 + · · ·

∣∣ < 1 (w ∈ D),

we can write

z (Ia,b,cf(z))
′

(1− ξ)z + ξIa,b,cf(z)
= 1 + U1(q, eiθ)ψ(z) + U2(q, eiθ)ψ2(z) + · · ·

and
w (Ia,b,cg(w))

′

(1− ξ)w + ξIa,b,cg(w)
= 1 + U1(q, eiθ)ϕ(w) + U2(q, eiθ)ϕ2(w) + · · ·

or, equivalently,

z (Ia,b,cf(z))
′

(1− ξ)z + ξIa,b,cf(z)
= 1 + U1(q, eiθ)m1z +

[
U1(q, eiθ)m2 + U2(q, eiθ)m2

1

]
z2 + · · · (2.1)

and

w (Ia,b,cg(w))
′

(1− ξ)w + ξIa,b,cg(w)
= 1 + U1(q, eiθ)r1w +

[
U1(q, eiθ)r2 + U2(q, eiθ)r2

1

]
w2 + · · · . (2.2)
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Additionally, it is well known that

|mk| ≤ 1 and |rk| ≤ 1 (∀k ∈ N) . (2.3)

Now, upon comparing the corresponding coefficients in (2.1) and (2.2), we get

(2− ξ)Ξ2a2 = U1(q, eiθ)m1, (2.4)

(ξ2 − 2ξ)Ξ2
2a

2
2 + (3− ξ)Ξ3a3 = U1(q, eiθ)m2 + U2(q, eiθ)m2

1 (2.5)

and
−(2− ξ)Ξ2a2 = U1(q, eiθ)r1, (2.6)

(ξ2 − 2ξ)Ξ2
2a

2
2 + (3− ξ)Ξ3

(
2a2

2 − a3

)
= U1(q, eiθ)r2 + U2(q, eiθ)r2

1. (2.7)

From the equations (2.4) and (2.6), one can easily find that

m1 = −r1, (2.8)

2(2− ξ)2Ξ2
2a

2
2 = U2

1 (q, eiθ)(m2
1 + r2

1). (2.9)

If we add (2.5) to (2.7), we obtain

2
[
(ξ2 − 2ξ)Ξ2

2 + (3− ξ)Ξ3

]
a2

2 = U1(q, eiθ) (m2 + r2) + U2(q, eiθ)
(
m2

1 + r2
1

)
. (2.10)

By making use of (2.9) in (2.10), we get

2

[
(ξ2 − 2ξ)Ξ2

2 + (3− ξ)Ξ3 −
(2− ξ)2

Ξ2
2U2(q, eiθ)

U2
1 (q, eiθ)

]
a2

2 = U1(q, eiθ) (m2 + r2) ,

which yields

a2
2 =

U3
1 (q, eiθ) (m2 + r2)

2
{

[(ξ2 − 2ξ)Ξ2
2 + (3− ξ)Ξ3]U2

1 (q, eiθ)− (2− ξ)2
Ξ2

2U2(q, eiθ)
} . (2.11)

Next, if we subtract (2.7) from (2.5), we obtain

2(3− ξ)Ξ3

(
a3 − a2

2

)
= U1(q, eiθ) (m2 − r2) . (2.12)

Then, in view of (2.9), the equation (2.12) becomes

a3 =
U2

1 (q, eiθ)
(
m2

1 + r2
1

)
2 (2− ξ)2

Ξ2
2

+
U1(q, eiθ) (m2 − r2)

2(3− ξ)Ξ3
.

Notice that from (2.3), we get desired inequality for |a3|.
From (2.11) and (2.12), we find that

a3 − ρa2
2 =

(1−ρ)U3
1 (q,eiθ)(m2+r2)

2{[(ξ2−2ξ)Ξ2
2+(3−ξ)Ξ3]U2

1 (q,eiθ)−(2−ξ)2Ξ2
2U2(q,eiθ)} + U1(q,eiθ)(m2−r2)

2(3−ξ)Ξ3

= U1(q,eiθ)
2

[(
h (ρ) + 1

(3−ξ)Ξ3

)
m2 +

(
h (ρ)− 1

(3−ξ)Ξ3

)
r2

]
,
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where

h (ρ) =
U2

1 (q, eiθ) (1− ρ)

[(ξ2 − 2ξ)Ξ2
2 + (3− ξ)Ξ3]U2

1 (q, eiθ)− (2− ξ)2
Ξ2

2U2(q, eiθ)
.

Thus, in view of (2.3), we get

∣∣a3 − ρa2
2

∣∣ ≤

∣∣U1(q, eiθ)

∣∣
(3− ξ)Ξ3

, 0 ≤ |h (ρ)| ≤ 1
(3−ξ)Ξ3

|h (ρ)|
∣∣U1(q, eiθ)

∣∣ , |h (ρ)| ≥ 1
(3−ξ)Ξ3

,

which evidently completes the proof of Theorem 1. q.e.d.

Analysis similar to that in the proof of the previous Theorem shows that

Theorem 2.2. Let the function f given by (1.1) be in the class Ka,b,cΣ (ξ, q, θ). Then

|a2| ≤
∣∣eiθ + qe−iθ

∣∣√|eiθ + qe−iθ|√
|4(ξ − 2)Ξ2

2 (2e2iθ + 2q2e−2iθ + (ξ + 2)q) + 3(3− ξ)Ξ3(e2iθ + q2e−2iθ + 2q)|
,

|a3| ≤
∣∣eiθ + qe−iθ

∣∣
3(3− ξ)Ξ3

+

∣∣e2iθ + q2e−2iθ + 2q
∣∣

4(ξ − 2)2Ξ2
2

for any real number ρ,∣∣a3 − ρa2
2

∣∣ ≤

∣∣eiθ + qe−iθ
∣∣

3(3− ξ)Ξ3
, |ρ− 1| ≤ Y

|1− ρ|
∣∣e2iθ + q2e−2iθ + 2q

∣∣ ∣∣eiθ + qe−iθ
∣∣

|4(ξ − 2)Ξ2
2 (2e2iθ + 2q2e−2iθ + (ξ + 2)q) + 3(3− ξ)Ξ3(e2iθ + q2e−2iθ + 2q)|

, |ρ− 1| ≥ Y

where Y =
|4(ξ−2)Ξ2

2(2e2iθ+2q2e−2iθ+(ξ+2)q)+3(3−ξ)Ξ3(e2iθ+q2e−2iθ+2q)|
3(3−ξ)Ξ3|e2iθ+q2e−2iθ+2q| .

3 Conclusion

In this present investigation, we have introduced and studied the coefficient problems associated
with the following new subclasses

Sa,b,c
Σ (ξ, q, θ) and Ka,b,cΣ (ξ, q, θ) (0 ≤ ξ ≤ 1, q ∈ (−1, 1] , θ ∈ [−π, π] ; z, w ∈ D)

of the class of normalized bi-univalent functions in the open unit disc D. For functions belonging
to these bi-univalent function classes, we have derived Taylor–Maclaurin coefficient inequalities and
considered the celebrated Fekete–Szegö problem in Section 2.

The geometric properties of the function classes Sa,b,c
Σ (ξ, q, θ), Ka,b,cΣ (ξ, q, θ) vary according to

the values assigned to the parameters involved. Nevertheless, some results for the special cases of
the parameters involved could be presented as illustrative examples.
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