Customizable embedded processor array for multimedia applications


Tükel M., Yurdakul A., Ors B.

INTEGRATION-THE VLSI JOURNAL, vol.60, pp.213-223, 2018 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 60
  • Publication Date: 2018
  • Doi Number: 10.1016/j.vlsi.2017.09.009
  • Journal Name: INTEGRATION-THE VLSI JOURNAL
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.213-223
  • Istanbul Technical University Affiliated: Yes

Abstract

We are proposing a Customizable Embedded Processor Array for Multimedia Applications (CPAMA). This architecture can be used as a standalone image/video processing chip in consumer electronics. Its building blocks are all designed to achieve low power and low area, thus it is a good candidate for low cost consumer electronics. Our contribution is, designing a configurable embedded multimedia processor array considering the nature of image/video processing applications. This approach is considered in all the basic blocks of the architecture. Because of its configurable architecture and ability to connect with other devices, it may be used in a large domain of applications. Our architecture is purely implemented with VHDL. It is not dependent on any technology or design software. We have implemented our architecture for different applications on a Xilinx Virtex-5 device and as a number of Application Specific Integrated Circuits (ASIC) by using 90 nm CMOS technology. Experimental case studies show that CPAMA has better or comparable results to the existing similar architectures in terms of performance and energy consumption. Our studies show that throughput of CPAMA is 0.3x-2.4x times better than ADRES. Energy consumption of CPAMA is 31-50% less than ADRES. On the other hand, in one configuration of IDCT application, CPAMA provides 56% less throughput and consumes 55% more energy than ADRES.