Dissipative dynamics and the statistics of energy states of a Hookean model for protein folding

Tuzel E., Erzan A.

JOURNAL OF STATISTICAL PHYSICS, cilt.100, ss.405-422, 2000 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 100
  • Basım Tarihi: 2000
  • Doi Numarası: 10.1023/a:1018616417953
  • Sayfa Sayıları: ss.405-422


A generic model of a random polypeptide chain, with discrete torsional degrees of freedom and Hookean spring connecting pails or hydrophobic residues, reproduces the energy probability distribution of real proteins over a very large range of energies. We show that this system with harmonic interactions, under dissipative dynamics driven by random noise, leads to a distribution of energy states obeying a modified one-dimensional Ornstein-Uhlenbeck process and giving rise Lo the so-called Wigner distribution. A tunably fine- or coarse-grained sampling of the energy landscape yields a family of distributions for the energies and energy spacings.