Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains


TUNCABOYLU D. C., ARGUN A., ALGI M. P., Okay O.

POLYMER, cilt.54, sa.23, ss.6381-6388, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 54 Sayı: 23
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1016/j.polymer.2013.09.051
  • Dergi Adı: POLYMER
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.6381-6388
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

Self-healing hydrogels suffer from low mechanical strength due to their reversible breakable bonds which may limit their use in any stress-bearing applications. This deficiency may be improved by creating a hybrid network composed of a combination of a physical network formed via reversible crosslinks and a covalent network. Here, we prepared a series of hybrid hydrogels by the micellar copolymerization of acrylamide with 2 mol % stearyl methacrylate (C18) as a physical crosslinker and various amounts of N,N'-methylenebis(acrylamide) (BAAm) as a chemical crosslinker. Rheological measurements show that the dynamic reversible crosslinks consisting of hydrophobic associations surrounded by surfactant micelles are also effective within the covalent network of the hybrid hydrogels. A significant enhancement in the compressive mechanical properties of the hybrid gels was observed with increasing BAAm content. The existence of an autonomous self-healing process was also demonstrated in hybrid gels formed at low chemical crosslinker ratios. The largest self-healing efficiency in hybrids was observed in terms of the recovered elastic modulus, which was about 80% of the original value. (C) 2013 Elsevier Ltd. All rights reserved.