Green two-tiered wireless multimedia sensor systems: an energy, bandwidth, and quality optimisation framework


Nguyen-Son Vo N. V., Dac-Binh Ha D. H., Canberk B., ZHANG J.

IET COMMUNICATIONS, cilt.10, sa.18, ss.2543-2550, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 18
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1049/iet-com.2016.0406
  • Dergi Adı: IET COMMUNICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2543-2550
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

In wireless multimedia sensor systems (WMSSs), the devices are equipped with multiple energy-constrained camera sensors (CSs) distributed over bandwidth-constrained and lossy wireless channels, in catastrophe-prone areas. Meanwhile, multimedia applications, e.g. video streaming, require considerable energy and bandwidth resources to gain long lifetime and high streaming quality. This study proposes an energy, bandwidth, and quality (EBQ) optimisation framework for green two-tiered WMSSs. The first tier contains the CSs and the second tier includes cluster heads (CHs) selected from the CSs with higher available energy and processing capacity. In the EBQ optimisation framework, a rate allocation optimisation problem is formulated under given constraints of available backhaul bandwidth of the CHs and quality of received videos at base stations (BSs). This problem is solved for optimal encoding rates to packetise each video captured from different environments into multiple descriptions for transmission. Consequently, the average energy consumption per CS is minimised for long lifetime while conserving the bandwidth of the CHs and guaranteeing high quality of received videos for the purpose of monitoring at the BSs. Simulations demonstrate that the proposed EBQ optimisation framework can efficiently enhance the performance of green two-tiered WMSSs in terms of minimum energy consumption, bandwidth efficiency, and high quality.