Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system

Kanoglu M., Ayanoglu A., Abusoglu A.

ENERGY, vol.36, no.7, pp.4422-4433, 2011 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 36 Issue: 7
  • Publication Date: 2011
  • Doi Number: 10.1016/j.energy.2011.03.081
  • Journal Name: ENERGY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.4422-4433
  • Keywords: Exergoeconomic analysis, High temperature steam electrolysis, Geothermal, Specific exergy costing (SPECO), Hydrogen production, HYDROGEN-PRODUCTION, EXERGOENVIRONMENTAL ANALYSIS, ENERGY, HEAT, WATER, CYCLE
  • Istanbul Technical University Affiliated: No


Exergoeconomic formulations and procedure including exergy flows and cost formation and allocation within a high temperature steam electrolysis (HTSE) system are developed, and applied at three environmental temperatures. The cost accounting procedure is based on the specific exergy costing (SPECO) methodology. Exergy based cost-balance equations are obtained by fuel and product approach. Cost allocations in the system are obtained and effect of the second-law efficiency on exergetic cost parameters is investigated. The capital investment cost, the operating and maintenance costs and the total cost of the system are determined to be 422.2, 2.04, and 424.3 (sic)/kWh, respectively. The specific unit exergetic costs of the power input to the system are 0.0895, 0.0702, and 0.0645 (sic)/kWh at the environmental temperatures of 25 degrees C, 11 degrees C, and -1 degrees C, respectively. The exergetic costs of steam are 0.000509, 0.000544, and 0.000574 (sic)/kWh at the same environmental temperatures, respectively. The amount of energy consumption for the production of one kg hydrogen is obtained as 133 kWh (112.5 kWh power + 20.5 kWh steam), and this corresponds to a hydrogen cost of 1.6 (sic)/kg H-2. (C) 2011 Elsevier Ltd. All rights reserved.