Climate Normalized Spatial Patterns of Evapotranspiration Enhance the Calibration of a Hydrological Model


Koch J., Demirel M. C. , Stisen S.

Remote Sensing, vol.14, no.2, 2022 (Journal Indexed in SCI Expanded)

  • Publication Type: Article / Article
  • Volume: 14 Issue: 2
  • Publication Date: 2022
  • Doi Number: 10.3390/rs14020315
  • Title of Journal : Remote Sensing

Abstract

Spatial pattern-oriented evaluations of distributed hydrological models have contributed towards an improved realism of hydrological simulations. This advancement has been supported by the broad range of readily available satellite-based datasets of key hydrological variables, such as evapotranspiration (ET). At larger scale, spatial patterns of ET are often driven by underlying climate gradients, and with this study, we argue that gradient dominated patterns may hamper the potential of spatial pattern-oriented evaluation frameworks. We hypothesize that the climate control of spatial patterns of ET overshadows the effect model parameters have on the simulated patterns. To address this, we propose a climate normalization strategy. This is demonstrated for the Senegal River basin as a modeling case study, where the dominant north-south precipitation gradient is the main driver of the observed hydrological variability. We apply the mesoscale Hydrological Model (mHM) to model the hydrological cycle of the Senegal River basin. Two multi-objective calibration experiments investigate the effect of climate normalization. Both calibrations utilize observed discharge (Q) in combination with remote sensing ET data, where one is based on the original ET pattern and the other utilizes the normalized ET pattern. As objective functions we applied the Kling-Gupta-Efficiency (KGE) for Q and the Spatial Efficiency (SPAEF) for ET. We identify parameter sets that balance the tradeoffs between the two independent observations and find that the calibration using the normalized ET pattern does not compromise the spatial pattern performance of the original pattern. However, vice versa, this is not necessarily the case, since the calibration using the original ET pattern showed a poorer performance for the normalized pattern, i.e., a 30% decrease in SPAEF. Both calibrations reached comparable performance of Q, i.e., KGE around 0.7. With this study, we identified a general shortcoming of spatial pattern-oriented model evaluations using ET in basins dominated by a climate gradient, but we argue that this also applies to other variables such as, soil moisture or land surface temperature.