Nitrogen removal performance of intermittently aerated membrane bioreactor treating black water

Hocaoglu S. M. , ATASOY E., BABAN A., Insel G. , ORHON D.

ENVIRONMENTAL TECHNOLOGY, vol.34, no.19, pp.2717-2725, 2013 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 34 Issue: 19
  • Publication Date: 2013
  • Doi Number: 10.1080/09593330.2013.786139
  • Page Numbers: pp.2717-2725


The study investigated the effect of intermitTENT aeration on the nitrogen removal performance of a membrane bioreactor (MBR) treating black water. A pilot-scale MBR with an effective volume of 630L operating as a sequencing batch reactor (SBR) with intermitTENT aeration was used in the experiments. Substrate feeding was limited to the initial non-aerated phase. The MBR unit was sustained at a steady state at a sludge age of 60d with a biomass concentration of around 10,000mg/L for 3 months. The treated black water could be characterized with an average COD of 950mg/L and total nitrogen of 172mg/L, corresponding to a low COD/N ratio of 5.5. The selected MBR scheme was quite effective, reducing COD down to 26mg/L, providing effective nitrification and yielding a total oxidized nitrogen concentration under 10mg N/L. The nitrogen removal performance was substantially better than the level predicted by process stoichiometry, due to multiple anoxic configuration inducing additional nitrogen removal. Dissolved oxygen profiles associated with the cyclic operation of the system suggested that the incremental nitrogen removal could be attributed to simultaneous nitrification-denitrification, a commonly observed mechanism in MBR systems sustained at high biomass concentrations.