Sectional curvatures on Weyl manifolds with a special metric connection


Özdemir F. , Turkoglu M. D.

TURKISH JOURNAL OF MATHEMATICS, cilt.43, ss.224-240, 2019 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 43 Konu: 1
  • Basım Tarihi: 2019
  • Doi Numarası: 10.3906/mat-1803-121
  • Dergi Adı: TURKISH JOURNAL OF MATHEMATICS
  • Sayfa Sayıları: ss.224-240

Özet

In this paper, Weyl manifolds, denoted by WS(g, w, pi, mu), having a special a semisymmetric recurrentmetric connection are introduced and the uniqueness of this connection is proved. We give an example of WS(g, w, pi, mu) with a constant scalar curvature. Furthermore, we define sectional curvatures of WS(g, w, pi, mu) and prove that any isotropic Weyl manifold WS(g, w, pi, mu) is locally conformal to an Einstein manifold with a semisymmetric recurrent-metric connection, EWS(g, w, pi, mu).