ACTA MECHANICA, vol.202, pp.181-204, 2009 (SCI-Expanded)
A network numerical simulator is developed and described to simulate the transient, nonlinear buoyancy-driven double diffusive heat and mass transfer of a viscous, incompressible, gray, absorbing-emitting fluid flowing past an impulsively started moving vertical plate adjacent to a non-Darcian geological porous regime. The governing boundary-layer equations are formulated in an (X (*), Y (*), t (*)) coordinate system with appropriate boundary conditions. An algebraic diffusion approximation is used to simplify the radiation heat transfer contribution. The non-dimensionalized transport equations are solved in an (X, Y, t) coordinate system using the network simulation model (NSM) and the computer code, Pspice. A detailed discussion of the network design is provided. The effects of Prandtl number, radiation-conduction parameter (Stark number), thermal Grashof number, species Grashof number, Schmidt number, Darcy number and Forchheimer number on the transient dimensionless velocities (U, V), non-dimensional temperature (T) and dimensionless concentration function (C) are illustrated graphically. Additionally, we have computed plots of U, V, T, C versus time and average Nusselt number and Sherwood number versus X, Y coordinate, for various thermophysical parameters. The model finds applications in geological contamination, geothermal energy systems and radioactive waste-repository near-field thermo-geofluid mechanics.