Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge


Alaton I. , Insel G., Eremektar G., Babuna F. F. , ORHON D.

CHEMOSPHERE, cilt.62, sa.9, ss.1549-1557, 2006 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 62 Konu: 9
  • Basım Tarihi: 2006
  • Doi Numarası: 10.1016/j.chemosphere.2005.06.010
  • Dergi Adı: CHEMOSPHERE
  • Sayfa Sayıları: ss.1549-1557

Özet

The textile industry is confronted with serious environmental problems associated with its immense wastewater discharge, substantial pollution load, extremely high salinity, and alkaline, heavily coloured effluent. Particular sources of recalcitrance and toxicity in dyehouse effluent are two frequently used textile auxiliaries; i.e. dye carriers and biocidal finishing agents. The present experimental work reports the observation of scientific and practical significance related with the effect of two commercially important textile dye carriers and two biocidal finishing agents on biological activated sludge treatment at a textile preparation, dyeing and finishing plant in Istanbul. Respirometric measurements of the dyehouse effluent spiked with the selected textile chemicals were carried out for the assessment of the "readily biodegradable COD fraction" of the wastewater. The respirometric data obtained to visualize the effect of the selected textile auxiliaries on biomass activity was evaluated by an adopted activated sludge model. Results have indicated that the tested biocides did not exert any significant inhibitory effect on the treatment performance of the activated sludge reactor at the concentrations usually encountered in the final, total dyehouse effluent. The situation with the dye carriers was inherently different; one dye carrier appeared to be highly toxic and caused serious inhibition of the microbial respirometric activity, whereas the other dye carrier, also known as the more ecological alternative, i.e. the "Eco-Carrier", appeared to be biodegradable. Finally, the respirometric profile obtained for the Eco-Carrier was described by a simplified respirometric model. (c) 2005 Elsevier Ltd. All rights reserved.