Production and characterization of Nd and Dy doped lanthanum zirconate-based thermal barrier coatings


Karabas M.

SURFACE & COATINGS TECHNOLOGY, cilt.394, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 394
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.surfcoat.2020.125864
  • Dergi Adı: SURFACE & COATINGS TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

In this study, thermal barrier coatings in (La-0.7(Nd, Dy)(0.3))(2)Zr2O7 compound were produced by the plasma spray method as a single and double layer with YSZ. Microstructure, X-ray diffraction analysis, thermal conductivity measurements in the temperature range of 25-805 degrees C, tensile adhesion strengths, and thermal cycle tests at 1250-1300 degrees C of the coatings were performed. It was observed that the thermal conductivity values of single-layer and double-layer coatings were lower than in the undoped lanthanum zirconate coating, and that thermal conductivity value increased with increasing temperature. According to thermal-cycle test results, the single-layer Dy, Nd doped lanthanum zirconate-based coating was damaged at 163 and 300 cycles respectively. There was no damage after 400 cycles in the double-layer coatings. The adhesion-strength values of single-layer coatings were lower than those of double-layer coatings. Such results imply that LDZ and LNZ ceramics can be top-layer materials on YSZ for a double-layer TBC system.