Investigation of the explosive type on the high strain forming of OFHC copper tube


Yıldız R. A.

Journal of Strain Analysis for Engineering Design, vol.57, no.4, pp.266-278, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 57 Issue: 4
  • Publication Date: 2022
  • Doi Number: 10.1177/03093247211021240
  • Journal Name: Journal of Strain Analysis for Engineering Design
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Page Numbers: pp.266-278
  • Keywords: OFHC copper, explosive metal forming, JWL, CEL, FEM, high explosive
  • Istanbul Technical University Affiliated: No

Abstract

The paper computationally investigates the explosive forming of the oxygen-free high thermal conductivity (OFHC) copper tube subjected to five different explosives. To investigate the effect of explosive type on the formability of OFHC copper tube, commonly used explosives, including C-4, TNT, HMX, Comp-B, and PBXN, was compared by using the finite element method. To verify the developed finite element model (FEM), the explosive forming experiments were carried out by using C-4. In the simulations, Coupled-Eulerian-Lagrangian (CEL) method to model the large deformations, Jones-Wilkins-Lee (JWL) equations of state (EOS) to define the explosive properties and Johnson-Cook (J-C) strength and damage models to specify the metal’s mechanical behavior were utilized. Besides, Hillerborg’s fracture energy was calculated with the Charpy impact test results and given as input to the FEM. The results of FEM were compared and verified using the results of explosive forming tests considering the mesh density and friction coefficient. The simulations revealed that the explosive type affected both the final shape and also the strain rate of the copper tube. When the simulation results for C-4 was taken as reference, HMX and PBX-N increased the strain rate as 110%, roughly. However, Comp-B and TNT reduced the strain rate by nearly 10% and 22%, respectively. Also, the explosive type changed the final hardness of the metal. OFHC Copper had the lowest hardness (112.7 HV) when the simulations were conducted with TNT. In contrast, the highest hardness value (129.5 HV) was reached when HMX was used in the simulations. In addition, simulations put forth that Hillerborg’s fracture energy criteria could be used in the explosive simulations to predict the damage on the metals.