Land-based sources of pollution along the Izmit Bay and their effect on the coastal waters


Morkoc E., Okay O., Edincliler A.

ENVIRONMENTAL GEOLOGY, cilt.56, sa.1, ss.131-138, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 56 Sayı: 1
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1007/s00254-007-1146-3
  • Dergi Adı: ENVIRONMENTAL GEOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.131-138
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

The degree and the contribution of each point source to the pollution were determined in the Izmit Bay during the period 1999-2000. During 8 campaigns, samples from 11 points in the channels and water samples from 5 points in the coastal sea were collected for chemical analysis. The important pollutant parameters taken into account are inflow of total organic carbon (TOC), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), nitrate, ortho-phosphate, ammonia and total polycyclic aromatic hydrocarbons (t-PAHs) in the discharge channels, and TOC, TSS, nitrate, ortho-phosphate, chlorophyll-a, temperature, dissolved oxygen (DO), and salinity in the coastal stations of the Bay. It should be pointed out that the industrial wastewaters entering the bay are partially treated but domestic wastes are discharged directly into the surface waters without any treatment. Of the pollution parameters measured in the channels, the highest concentrations, except TP, were observed in the Dil River and in the Eastern Channel. Concentrations of TOC, TSS, TN, TP, ammonia, nitrate and o-phosphate were found at concentrations of 231, 290, 152, 3.8, 16, 79, and 3.07 mg/L, respectively. Annual inflows of TOC were 21,301, 580, and 775 t/year and for TSS were 26,742, 585, and 1505 t/year in the western, central and eastern parts, respectively. The results show that the water quality of the bay has been deteriorated and 80% of the pollution was caused by Dil River for all parameters measured.