Unconventional Production of Bright White Light Emission by Nd-Doped and Nominally Un-Doped Y2O3 Nano-Powders

Bilir G., OZEN G., Collins J., CESARIA M., Di Bartolo B.

IEEE PHOTONICS JOURNAL, vol.6, no.4, 2014 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 6 Issue: 4
  • Publication Date: 2014
  • Doi Number: 10.1109/jphot.2014.2339312
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Istanbul Technical University Affiliated: Yes


We report the production of a broad band (ranging from 400 to 900 nm) white light following the monochromatic infrared light (803.5 and 975 nm) excitation of both nominally un-doped and Nd3+-doped Y2O3 nano-powders, even up to 20% of Nd3+ content. Experimental results indicate that such emission feature is a nano-scale phenomenon, cannot be ascribed to an overlap of sharp emission bands in the un-doped case and, even if assisted by the Nd-34 presence, is a host matrix-related process. The measured white light emission is strongly dependent on either environment pressure (a pressure threshold occurs) or pumping power. The rising patterns of the white light emission were found to increase faster for either increasing Nd3+ content and pumping power or decreasing particle size. Notably, high correlated color temperature (2756 K), color rendering index (99), and efficiency (864 lx/W) values were measured for the un-doped sample under 803.5 nm exciting wavelength.