New dithiocarbamate-based polymer (DTCP) as an additive to improve microporous polysulfone membrane efficiency in lead and dye removal

Kamali M., Ebrahimi A., Vatanpour Sargheın V.

Journal of Environmental Management, vol.339, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 339
  • Publication Date: 2023
  • Doi Number: 10.1016/j.jenvman.2023.117925
  • Journal Name: Journal of Environmental Management
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, International Bibliography of Social Sciences, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Communication Abstracts, EMBASE, Environment Index, Geobase, Greenfile, Index Islamicus, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Keywords: Anti-fouling, Dithiocarbamate-based polymer, Dye removal, Lead removal, PSF Membrane
  • Istanbul Technical University Affiliated: Yes


For fabricating a membrane with hydrophilic and complexing agent groups, a new dithiocarbamate-based polymer (DTCP) containing dithiocarbamate, thioamide, and ethereal oxygen groups was synthesized and blended in polysulfone (PSF) matrix with 1, 2, 5, and 10 wt% proportion. The membranes were produced by the nonsolvent induced phase separation method. For DTCP characterization, NMR, FTIR, TGA and GPC techniques were used. SEM images show that no morphological change can be seen even in 10 wt% blended membranes. AFM surface images show that the roughness of 5 and 10 wt% membranes extremely increased. The performance of the DTCP/PSF membranes were investigated in the separation of lead ions and Reactive Yellow 39 dye from the contaminated water. The outcomes indicated that by increasing the amount of DTCP up to 10 wt%, the pure water flux, bovine serum albumin flux, and the lead removal increased very efficiently compared to the bare one. Blending of more than 1 wt% DTCP, cause to removal of 99.6% lead ions. The water contact angle decreased by the adding of DTCP, caused to increase fouling resistance. The results of this research shows that the synthesized DTCP can be used as a good additive for improving membrane permeability, anti-fouling and especially heavy metal removal efficiency.