Crustal anisotropy beneath southeastern Tibet inferred from directional dependence of receiver functions


Tiwari A. K., Singh A., Saikia D., Singh C., Eken T.

PHYSICS OF THE EARTH AND PLANETARY INTERIORS, cilt.331, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 331
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.pepi.2022.106912
  • Dergi Adı: PHYSICS OF THE EARTH AND PLANETARY INTERIORS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, INSPEC, zbMATH, Civil Engineering Abstracts
  • Anahtar Kelimeler: Seismic anisotropy, Receiver functions, Harmonic decomposition, Southeastern Tibet, EASTERN HIMALAYAN SYNTAXIS, GEODYNAMIC IMPLICATIONS BENEATH, FAULT SLIP RATES, SEISMIC ANISOTROPY, NAMCHE-BARWA, UPPER-MANTLE, HARMONIC DECOMPOSITION, VELOCITY ANISOTROPY, TECTONIC EVOLUTION, SPLITTING ANALYSIS
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

The present study reveals depth-dependent crustal anisotropic signatures beneath southeastern Tibet. It is used to characterize the rheology of major faults and shear zones, which is important for understanding crustal defor-mation and geodynamic processes beneath the study area. The depth-dependent anisotropic orientations have been investigated based on the directional dependence of radial and tangential receiver functions (RFs). To achieve our objective, we first computed 3683 good-quality P-RFs from 174 teleseismic earthquakes (M = 5.5) recorded within epicentral distance range of 30 & LCIRC; to 90 & LCIRC; at 70 seismic stations of the Eastern Syntaxis experiment (XE Network). After that, we employed the harmonic decomposition technique at each seismic station to retrieve the first (k = 0), second (k = 1) and third (k = 2) degree harmonics from the RF dataset. Our study characterizes the type (horizontal or plunging) of the symmetry axis. The anisotropic axes of the upper crust (0-20 km) appear to vary from approximately N-S to NE-SW. They are usually orthogonal to orientations of major faults and suture zones in the region, implying the effect of structure-induced anisotropy. It can be explained by regularly oriented cracks or macroscopic structure alignment along the major faults. The anisotropic orientations of the middle crust (20-40 km) are NE-SW to E-W direction, reflecting a different pattern than those estimated in the upper crust. The lower crustal (40-70 km) anisotropic pattern (E-W or ESE-WNW direction) exhibits distinct orienta-tions than the upper and middle crust. The crystal preferred orientations (CPO) of the mica and amphibole minerals are likely to cause anisotropy observed at mid-to-lower crustal depth ranges, emphasizing the role of ductile deformation due to material movement towards the east underneath southeastern Tibet. Our results, along with S(K)KS and direct S-waves splitting signatures, suggest mid-to-lower crust and lithospheric mantle material movement towards the east, while the discrepancies in anisotropic symmetric axes directions may be indicative for the partial coupling between the crust and upper mantle beneath the region.