Digital audio watermarking by learning in wavelet domain

Kirbiz S., Günsel Kalyoncu B.

IEEE 14th Signal Processing and Communications Applications, Antalya, Turkey, 16 - 19 April 2006, pp.682-683 identifier

  • Publication Type: Conference Paper / Full Text
  • City: Antalya
  • Country: Turkey
  • Page Numbers: pp.682-683
  • Istanbul Technical University Affiliated: Yes


Most of the watermark (WM) decoding schemes use correlation-based methods because of their simplicity. Generally, a decision threshold specified semi-automatically is used at the decoding site. The main problem of the correlation-based decoders is the existence of undesirable correlation between the embedded signal and the host signal that makes the decision threshold specification harder, especially in noisy channels. In this paper, WM decoding is modeled as a pattern recognition problem, thus eliminates the threshold specification problem by learning the embedded data in wavelet domain followed by a nonlinear classification. Furthermore, the encoding performance is improved by perceptual control of Watermark-to-Signal-Ratio (WSR) without disturbing imperceptibility. When the WSR is higher than -30 dB, the decoding and detection performances of the developed system are greater than 99% and 98%, respectively. System false alarm ratios remain less than 2%.