Role of the East Asian trough on the eastern Mediterranean temperature variability in early spring and the extreme case of 2004 warm spell

Bozkurt D., Ezber Y., Şen Ö. L.

CLIMATE DYNAMICS, vol.53, pp.2309-2326, 2019 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 53
  • Publication Date: 2019
  • Doi Number: 10.1007/s00382-019-04847-5
  • Journal Name: CLIMATE DYNAMICS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.2309-2326
  • Keywords: Hydrometeorological extreme events, Atmospheric river, Atmospheric teleconnections, Euro-Mediterranean, Rossby wave, Euphrates-Tigris Rivers, NORTH-ATLANTIC OSCILLATION, WINTER MONSOON, ATMOSPHERIC RIVERS, ARCTIC OSCILLATION, BLOCKING, CLIMATE, PRECIPITATION, COLD, IMPACTS, WEATHER
  • Istanbul Technical University Affiliated: Yes


This study investigates the potential influence of the East Asian trough (EAT) on the eastern Mediterranean temperature variability in early spring. In connection with this, it also examines the extreme case of the year 2004 when anomalous warming of the eastern Anatolia resulted in unprecedented snowmelt runoff amounts in the Euphrates and Tigris basins in early March. In the analyses, we used reanalysis data, gridded products of surface temperature and snow cover, river discharge data and satellite imagery. We employed an intensity index for the EAT and a trough displacement index for the Mediterranean trough (MedT) to explore the relationship between the strength of the EAT and the displacement of the MedT at pentad resolution. Our analysis shows that there are statistically significant correlations (at 99% confidence level) between the strength of the EAT and the zonal shift of the MedT on some pentads (e.g., 3rd, 13th, 37th and 59th), but that the highest correlation occurs on the 13th pentad of the year corresponding to the early days of March. It seems that, on this pentad, when the EAT is strong, the MedT tends to be located in the west of its climatological position (about 30-35 degrees E) which causes warmer conditions over the eastern Mediterranean. In 2004, which appears to be an extreme year for this phenomenon, the MedT is positioned and deepened in the central Mediterranean (about 10-15 degrees E), and extended towards central Africa during the early days of March. This synoptic pattern provided favorable conditions for the development of a tropical plume/atmospheric river with a southwest-northeast orientation, carrying warm tropical African air towards the eastern Mediterranean and Anatolian highlands resulting in rapid melting of the snowpack as well as severe precipitation, and thus flooding events, in the eastern Anatolia. A key finding in our analysis is that the strengthening of the EAT was instrumental to the increased amplitude of the ridge-trough system over the Euro-Mediterranean region in the early days of 2004 spring. We highlight that the response of surface and upper level meteorological conditions to the amplitude of the ridge-trough system enhanced by the strength of the EAT might be crucial in the understanding of some of the extreme hydrometeorological events in the eastern Mediterranean region.