Multidisciplinary Code Coupling for Analysis and Optimization of Aeroelastic Systems


Nikbay M., ONCU L., AYSAN A.

JOURNAL OF AIRCRAFT, cilt.46, sa.6, ss.1938-1944, 2009 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 6
  • Basım Tarihi: 2009
  • Doi Numarası: 10.2514/1.41491
  • Dergi Adı: JOURNAL OF AIRCRAFT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1938-1944
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

This paper presents a practical methodology for static aeroelastic analysis and aeroelastic optimization via coupling of high-fidelity commercial codes. A finite-volume-based flow solver FLUENT is used to solve three-dimensional Elder equations, Gambit is used to generate mesh in the fluid domain, and CATIA is used to model parametric solid geometry. Abaqus. a structural finite element method solver. is used to compute the structural response of the aeroelastic system. The mesh-based parallel-code coupling interface MpCCI is used to exchange the pressure land displacement information between FLUENT and Abaqus to perform a loosely coupled aeroelastic analysis by a staggered algorithm, and modeFRONTIER software is used as the optimization driver for scheduling a nondominated sorting genetic algorithm initiated with design of experiments. First. an AGARD 445.6 wing configuration is optimized with objectives of maximum lift/drag ratio and minimum weight. Optimization variables are chosen as sweep angle at the quarter-chord and the taper ratio of the wing. Second, a more realistic wing model, ARW-2, is optimized for thickness values of the inner ribs and spars. Aeroelastic analysis produce consistent results with experimental data.. and the applied optimization methodology results in Pareto-optimal solutions.