Learner Engagement Measurement and Classification in 1:1 Learning


Aslan S., Çataltepe Z. , Diner I., Dundar O., Esme A. A. , Ferens R., ...More

13th International Conference on Machine Learning and Applications (ICMLA), Michigan, United States Of America, 3 - 06 December 2014, pp.545-552 identifier identifier

  • Publication Type: Conference Paper / Full Text
  • Doi Number: 10.1109/icmla.2014.111
  • City: Michigan
  • Country: United States Of America
  • Page Numbers: pp.545-552

Abstract

We explore the feasibility of measuring learner engagement and classifying the engagement level based on machine learning applied on data from 2D/3D camera sensors and eye trackers in a 1:1 learning setting. Our results are based on nine pilot sessions held in a local high school where we recorded features related to student engagement while consuming educational content. We label the collected data as Engaged or NotEngaged while observing videos of the students and their screens. Based on the collected data, perceptual user features (e.g., body posture, facial points, and gaze) are extracted. We use feature selection and classification methods to produce classifiers that can detect whether a student is engaged or not. Accuracies of up to 85-95% are achieved on the collected dataset. We believe our work pioneers in the successful classification of student engagement based on perceptual user features in a 1:1 authentic learning setting.