TiO2-decorated porous carbon nanofiber interlayer for Li-S batteries

Yanılmaz M.

RSC ADVANCES, vol.10, no.28, pp.16570-16575, 2020 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 10 Issue: 28
  • Publication Date: 2020
  • Doi Number: 10.1039/d0ra01791d
  • Journal Name: RSC ADVANCES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, Chemical Abstracts Core, Compendex, Metadex, Directory of Open Access Journals
  • Page Numbers: pp.16570-16575
  • Istanbul Technical University Affiliated: Yes


Lithium-sulfur (Li-S) batteries are the most promising energy storage systems owing to their high energy density. However, shuttling of polysulfides detracts the electrochemical performance of Li-S batteries and thus prevents the commercialization of Li-S batteries. Here, TiO2@porous carbon nanofibers (TiO2@PCNFs) are fabricatedviacombining electrospinning and electrospraying techniques and the resultant TiO2@PCNFs are evaluated for use as an interlayer in Li-S batteries. TiO(2)nanoparticles on PCNFs are observed from SEM and TEM images. A high initial discharge capacity of 1510 mA h g(-1)is achieved owing to the novel approach of electrospinning the carbon precursor and electrospraying TiO(2)nanoparticles simultaneously. In this approach TiO(2)nanoparticles capture polysulfides with strong interaction and the PCNFs with high conductivity recycle and re-use the adsorbed polysulfides, thus leading to high reversible capacity and stable cycling performance. A high reversible capacity of 967 mA h g(-1)is reached after 200 cycles at 0.2C. The cell with the TiO2@PCNF interlayer also delivers a reversible capacity of around 1100 mA h g(-1)at 1C, while the cell without the interlayer exhibits a lower capacity of 400 mA h g(-1). Therefore, this work presents a novel approach for designing interlayer materials with exceptional electrochemical performance for high performance Li-S batteries.