Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants

Doğruel S., Atesci Z. C., Aydin E., Pehlivanoğlu Mantaş E.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, vol.27, no.36, pp.45460-45475, 2020 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 27 Issue: 36
  • Publication Date: 2020
  • Doi Number: 10.1007/s11356-020-10339-5
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Page Numbers: pp.45460-45475
  • Keywords: Advanced treatment, Emerging contaminants, Metabolites, Micropollutants, Municipal wastewater, Ozonation, Removal efficiency, Secondary effluent
  • Istanbul Technical University Affiliated: Yes


The objective of this study was the experimental evaluation of ozonation as an additional treatment step for the removal emerging contaminants from secondary effluents of two wastewater treatment plants (WWTPs), one receiving a primarily domestic wastewater (WWTP-A), and the other one domestic sewage together with pretreated tannery wastewater streams (WWTP-B). The experimental runs were conducted at two different pH values (i.e., original pH and adjusted pH of 10) and at six different ozone doses ranging between 0.2 and 1.5 mg O-3/mg DOC. A total of 20 compounds, including 12 micropollutants (MPs) and 8 metabolites, were selected as the target analytes for the evaluation of ozonation performance. When the tested MPs and metabolites were considered individually, the maximum elimination level for each compound was reached at different doses; therefore, optimum ozone doses were determined based on the reduction of the total MP content. Ozonation at the original pH with an ozone dose in the range of 0.4-0.6 and 0.8-1.0 mg O-3/mg DOC was selected as the optimum operating condition for WWTP-A and WWTP-B, respectively, both resulting in an average overall removal efficiency of 55%. Ozone treatment yielded only poor elimination for o-desmethyl naproxen (15%), which was found to be by far the main contributor accounting alone for approximately 30% of the total MP concentration in the secondary effluents. The systematic approach used in this study could well be adopted as a guide to other domestic and municipal WWTPs, which are thought to have a highly variable composition in terms of the MPs and metabolites.