An improved stopband and sharp roll off microstrip low pass filter with defected ground structures


Ertay A. O. , ABBAK M., Şimşek S.

INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, vol.8, no.3, pp.573-581, 2016 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 8 Issue: 3
  • Publication Date: 2016
  • Doi Number: 10.1017/s175907871500094x
  • Title of Journal : INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES
  • Page Numbers: pp.573-581

Abstract

In this paper a novel low pass filter (LPF) design procedure is proposed for electromagnetic bandgap based microstrip filters without using classical filter design approach. LPF is designed for ultra-wide stopband and sharp roll-off rate via proposed design procedure. It has been shown that finite periodic fan-shaped defected ground structures (FSDGSs) and double radial stubs (DRSs) yield broad stopband and very sharp transition band. The proposed LPF has 23 dB passband from dc to 1.49 GHz, and 220 dB broad stopband from 1.65 GHz up to 7.41 GHz. Full wave electromagnetic (EM) simulation of the proposed filter is achieved with ANSYS’s High Frequency Structure Simulator (HFSS) and equivalent circuit (EC) model of the filter is proposed and verified via Applied Wave Research (AWR) software. To verify the simulations, filter is realized on ARLON AD1000 substrate, and measured with Agilent 5245A PNA-X Vector Network Analyzer. Measurement results of fabricated filter are in good agreement with EM and EC simulations.

In this paper a novel low pass filter (LPF) design procedure is proposed for electromagnetic bandgap based microstrip filters without using classical filter design approach. LPF is designed for ultra-wide stopband and sharp roll-off rate via proposed design procedure. It has been shown that finite periodic fan-shaped defected ground structures (FSDGSs) and double radial stubs (DRSs) yield broad stopband and very sharp transition band. The proposed LPF has -3 dB passband from dc to 1.49 GHz, and -20 dB broad stopband from 1.65 GHz up to 7.41 GHz. Full wave electromagnetic (EM) simulation of the proposed filter is achieved with ANSYS's High Frequency Structure Simulator (HFSS) and equivalent circuit (EC) model of the filter is proposed and verified via Applied Wave Research (AWR) software. To verify the simulations, filter is realized on ARLON AD1000 substrate, and measured with Agilent 5245A PNA-X Vector Network Analyzer. Measurement results of fabricated filter are in good agreement with EM and EC simulations.