Robust PID controller design via dominant pole assignment for systems with parametric uncertainties

Dincel E., Söylemez M. T.

Asian Journal of Control, vol.24, no.2, pp.834-844, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 24 Issue: 2
  • Publication Date: 2022
  • Doi Number: 10.1002/asjc.2484
  • Journal Name: Asian Journal of Control
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, Compendex, INSPEC, zbMATH
  • Page Numbers: pp.834-844
  • Keywords: generalized Nyquist theorem, Kharitonov regions, parametric uncertainty, PID controllers, pole assignment, KHARITONOV REGIONS, STABILITY
  • Istanbul Technical University Affiliated: Yes


© 2020 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.In this paper, a novel robust PID controller design technique is proposed for the parametric uncertain systems via the dominant pole assignment approach. In the closed-loop, it is aimed that two poles are placed in the desired (dominant) region, and it is guaranteed that the remaining (unassigned) poles are located far away from the dominant pole region under all possible perturbations. The robust PID controller design technique is firstly given for the interval type characteristic polynomials with the help of vertex results. After that, the proposed method is generalized to cover the affine-linear type characteristic polynomials. The method is based on the well-known robust stability theorems and the generalized Nyquist theorem. The success of the proposed design technique is demonstrated on the control systems through simulation studies for both the interval and affine-linear cases and compared with the other robust PID controllers from the literature. It is shown that the proposed robust PID controllers guarantee the desired pole configuration in the closed-loop, and the closed-loop performance specifications are satisfied even in the worst case.