Machine number, priority rule, and due date determination in flexible manufacturing systems using artificial neural networks


YILDIRIM M. B. , Cakar T. , DOGUC U., MEZA J. C.

COMPUTERS & INDUSTRIAL ENGINEERING, vol.50, pp.185-194, 2006 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 50
  • Publication Date: 2006
  • Doi Number: 10.1016/j.cie.2006.02.002
  • Title of Journal : COMPUTERS & INDUSTRIAL ENGINEERING
  • Page Numbers: pp.185-194

Abstract

When there is a production system With excess capacity, i.e. more capacity than the demand for the foreseeable. future, upper management might consider utilizing only a portion of the available capacity by decreasing the number of workers or halting production on some of the machines/production lines, etc. while preserving the flexibility of the production system to satisfy demand spikes. To achieve this flexibility, upper management might be willing to attain some pre-determined/desired performance values in a production system having identical parallel machines in each work center. In this study, we propose a framework that utilizes parallel neural networks to make decisions on the availability of resources, due date assignments for incoming orders, and rules for scheduling. This framework is applied to a flexible manufacturing system with work centers having parallel identical machines. The artificial neural networks were able to satisfactorily capture the underlying relations hip between the design and control parameters of a manufacturing system and the resulting performance targets. (c) 2006 Elsevier Ltd. All rights reserved.