The meandering current mobility model and its impact on underwater mobile sensor networks

Caruso A., Paparella F., Vieira L. F. M. , Erol M., Gerla M.

27th IEEE Conference on Computer Communications (INFOCOM 2008), Arizona, United States Of America, 15 - 17 April 2008, pp.221-225 identifier identifier

  • Publication Type: Conference Paper / Full Text
  • Volume:
  • Doi Number: 10.1109/infocom.2008.53
  • City: Arizona
  • Country: United States Of America
  • Page Numbers: pp.221-225


Underwater mobile acoustic sensor networks are promising fools for the exploration of the oceans. These networks require new robust solutions for fundamental issues such as: localization service for data tagging and networking protocols for communication. All these tasks are closely related with connectivity, coverage and deployment of the network. A realistic mobility model that can capture the physical movement of the sensor nodes with ocean currents gives better understanding on the above problems. In this paper, we propose a novel physically-inspired mobility model which is representative of, underwater environments. We study how the model affects a range-based localization protocol, and its impact on the coverage and connectivity of the network under different deployment scenarios.