Incremental Clustering via Nonnegative Matrix Factorization


Bucak S. S. , Günsel Kalyoncu B.

19th International Conference on Pattern Recognition (ICPR 2008), Tama, Japan, 8 - 11 December 2008, pp.640-643 identifier

  • Publication Type: Conference Paper / Full Text
  • City: Tama
  • Country: Japan
  • Page Numbers: pp.640-643

Abstract

Nonnegative matrix factorization (NW) has been shown to be an efficient clustering tool. However, NMF's batch nature necessitates recomputation of whole basis set for new samples. Although NMF is a powerful content representation tool, this limits the use of NMF in online processing of large data sets. Another problem with NMF, like other partitional methods, is determining the actual number of clusters. Deciding the rank of the factorization is also critical since it has a significant feet on clustering performance. This paper introduces as NMF based incremental clustering algorithm which allows increasing number of clusters adaptively thus eliminates optimal rank selection problem. Test results obtained on large video data sets demonstrate that the proposed clustering scheme is capable of labeling linearly separable data as well as non-separable samples with a small false positive ratio.