11th International Conference on Advances in Computer-Human Interactions (ACHI), Rome, Italy, 25 - 29 March 2018, pp.45-50
In this paper, we present a new approach to real-time tracking and sonification of 3D object shapes and test the ability of blindfolded participants to learn to locate and recognize objects using our system in a controlled physical environment. In our sonification and sensory substitution system, a depth camera accesses the 3D structure of objects in the form of point clouds and objects are presented to users as spatial audio in real time. We introduce a novel object tracking scheme, which allows the system to be used in the wild, and a method for sonification of objects which encodes the internal 3D contour of objects. We compare the new sonfication method with our previous object-outline based approach. We use an ABA/BAB experimental protocol variant to test the effect of learning during training and testing and to control for order effects with a small group of participants. Results show that our system allows object recognition and localization with short learning time and similar performance between the two sonification methods.