Advances in Polymers of Intrinsic Microporosity (PIMs)-Based Materials for Membrane, Environmental, Catalysis, Sensing and Energy Applications

Topuz F., Abdellah M. H., Budd P. M., Abdulhamid M. A.

Polymer Reviews, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Review
  • Publication Date: 2023
  • Doi Number: 10.1080/15583724.2023.2236677
  • Journal Name: Polymer Reviews
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Keywords: electrospinning, gas separation, organic solvent nanofiltration (OSN), pervaporation, Polymer of intrinsic microporosity (PIM), porous polymers, water treatment
  • Istanbul Technical University Affiliated: Yes


Polymers of intrinsic microporosity (PIMs), with an interconnected microporous network, high surface area, and structural diversity, have attracted great interest in developing diverse materials for various applications in the fields of environmental remediation, gas and liquid separation, sensors, and energy. Solution-processable PIMs can be transformed into various robust functional materials, including films, membranes, coatings, and fibers, that can be applied to address different industrial challenges. Since the first PIM synthesis, great strides have been made in expanding the structural diversity of PIMs by designing fine-tuned PIMs for various applications. This review provides a general overview of PIMs, from their synthesis to their involvement in state-of-the-art applications such as water and air filtration, gas and liquid separation, catalysis, sensing, and energy applications, during the last decade. Several PIMs have exhibited outstanding performance in oil adsorption, gas separation, and catalysis. In this context, PIMs’ functionality and porosity are key parameters that must be controlled to tailor PIMs for broader applications. Overall, this review provides a comprehensive overview of PIMs from chemistry to applications and highlights the challenges and prospects of the next generation of PIM-based functional materials that will open new avenues for adsorption, gas separation, and filtration applications.