Coordination of steering and individual wheel braking actuated vehicle yaw stability control


Guvenc B., Acarman T., Guvenc L.

4th Intelligent Vehicles Symposium, Ohio, Amerika Birleşik Devletleri, 9 - 11 Haziran 2003, ss.288-293 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Doi Numarası: 10.1109/ivs.2003.1212924
  • Basıldığı Şehir: Ohio
  • Basıldığı Ülke: Amerika Birleşik Devletleri
  • Sayfa Sayıları: ss.288-293
  • İstanbul Teknik Üniversitesi Adresli: Hayır

Özet

Active safety of road transport requires, among other things, the improvement of road vehicle yaw stability by active control. One approach for yaw dynamics improvement is to use differential braking, thereby creating the moment that is necessary to counteract the undesired yaw motion. An alternative approach is to command additional steering angles to create the counteracting moment. The. maximum benefit, of course, can be gained through coordinated and combined use of both methods of corrective yaw motion generation in a control strategy. This problem has been approached by using a revised model regulator here as the main controller that utilizes coordinated steering and individual wheel braking actuation, with the aim of achieving better vehicle yaw stability control. Independent use of the individual means of actuation are treated first. Possible strategies for combined and coordinated use of steering and individual wheel braking action in a vehicle yaw dynamics controller are then presented. Simulation results on a nonlinear two track vehicle model are used to illustrate the effectiveness of the coordinated approach.