14th ASME International Conference on Nanochannels, Microchannels, and Minichallels, Washington, Kiribati, 10 - 14 July 2016
Inertial focusing has attracted a significant attention in microfluidics applications in recent years. Inertial focusing occurs only under specific flow conditions at which particles migrate across streamlines to a specific number of equilibrium positions. This behavior is mostly not sensitive to the particle size in straight channels. However, curved channels can allow sized based particle separation. In this study, curved channels with various aspect ratios have been investigated by numerical simulations. Consideration of flow regimes reveals that some conditions establish a high-quality single-particle focusing situation which is characterized by the alignment of particles within a narrow band. The outcomes of our numerical model contribute to the understanding of limitation of particle focusing and particle separation in curved microchannels.